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A FORMALIZATION OF MEASUREMENT SCALE FORMS 

By Wayne A. L e a  
E l e c t r o n i c s  Research Center  

SUMMARY 

The g e n e r a l  measurement scale h i e r a r c h y  developed by S. S .  

Stevens h a s  had widespread use  and d i s c u s s i o n ,  b u t  h a s  s u f f e r e d  
from v a r i o u s  c r i t i c i s m s ,  many of which may b e  t r a c e d  t o  t h e  
informal  d e s c r i p t i o n s  and minimal mathematical  formula t ions  used 
i n  t h e  o r i g i n a l  d e f i n i t i o n s  and c l a i m s .  I n  t h i s  paper ,  a mathe- 
ma t i ca l  model of measurement and s p e c i f i c  scale forms i s  devel-  
oped, us ing  t h e  minimum mathematical  s t r u c t u r e  necessary  t o  
d e f i n e  each scale t y p e .  Measurement i s  d e f i n e d ,  and a series o f  
r e s t r i c t i o n s  are a p p l i e d  t o  measurements t o  y i e l d  a p r e c i s e l y  
s p e c i f i e d  h i e r a r c h y  of measurement s c a l e  f o r m s  i nc lud ing  nomina2 , 
o r d i n a l ,  i n t e r v a l ,  and r a t i o  s c a l e s ,  as w e l l  as  s e v e r a l  o t h e r s .  
E q u i v a l e n c e s  a r e  mathematical ly  de f ined  f o r  each s c a l e  f o r m ,  
and theorems are p resen ted  s p e c i f y i n g  t h e  sets of t r ans fo rma t ions  
under which equiva lence  i s  p rese rved ,  t h u s  y i e l d i n g  t h e  scale 
form i n v a r i a n c e s  d i scussed  by Stevens.  The h i e r a r c h y  of measure- 
ment scale f o r m s  i s  s u m m a r i z e d  i n  a p i c t o r i a l  ' spectrum'  diasram. 

The d-evelopment of t h e  model i n  t e r m s  of t h e  s t r u c t u r e  of 
p o s s i b l e  measurement comparisons ( e . q . ,  whether one can e s t a b l i s h  
t h a t  one i t e m  i s  ' l ess '  t h a n  ano the r ,  o r ,  a l t e r n a t i v e l y ,  e s t a b l i s h  

how much t h e  one i s  less than  t h e  o t h e r ,  e t c . )  i s  i n  marked 
c o n t r a s t  t o  S tevens '  d e f i n i t i o n  i n  terms of  scale inva r i ances .  
T h i s  approach avoids  s e v e r a l  cr i t ic isms raised a g a i n s t  Stevens ' 
approach. One might hope t h a t  t h e  a l t e r n a t i v e  approaches would 
y i e l d  corresponding r e s u l t s ,  and indeed t h i s  i s  found t o  be 
g e n e r a l l y  t r u e .  Those cases where d i f f e r e n c e s  do occur ,  however, 
prove t o  be v i t a l ,  and y i e l d  several s t r i k i n g  unanswered ques t ions  
about  scale forms and t h e i r  i n v a r i a n c e s .  



I. - INTRODUCTION 

S. S. S tevens  has ,  i n  several pape r s  (refs. 1,2,3) r e l e v a n t  

t o  psychophysics ,  p re sen ted  a h i e r a r c h y  of measurement s c a l e  
f o r m s .  These' scales have proven of some m e r i t  t o  t h e  g e n e r a l  

t heo ry  of measurement, i t s  i m p l i c a t i o n s  about  a p p r o p r i a t e  s ta t i s -  
t i c a l  measures,  and i t s  a p p l i c a t i o n  t o  s u b j e c t i v e  s c a l i n g .  Y e t ,  

s o m e  deba te  has  ensued ( r e f s .  4,5) concerning t h e  v a l i d i t y  and 
p r e c i s e n e s s  of S tevens '  scale forms and a s s o c i a t e d  p r e d i c t i o n s .  

One argument ( r e f .  5 )  a g a i n s t  S t evens '  h i e r a r c h y  has  cen te red  on 
t h e  imprec is ion  of t h e  d e s c r i p t i o n  of t h e  scale forms, t h e i r  
i n v a r i a n c e s  under c e r t a i n  t r ans fo rma t ions ,  and t h e  consequent 
s t a t i s t i c a l  p r e d i c t i o n s .  

I n  t h i s  r e p o r t ,  a f o r m a l i z a t i o n  o r  mathematical  model of 

Stevens '  s c a l e s  i s  p resen ted ,  and some theorems are developed, 
demonstrat ing t h e  v a l i d i t y  of a number of S tevens '  r e s u l t s  and 

provid ing  a framework f o r  t h e  d e r i v a t i o n  o f  a d d i t i o n a l  theorems. 
This  model has  proven of cons ide rab le  va lue ,  f o r  example, i n  t h e  

development of an axiomatic  theory  of measurement of  s y n t a c t i c a l  
complexity of c e r t a i n  formal  expres s ions  ( r e f .  6 ) .  I t s  app l i ca -  

b i l i t y  t o  o t h e r  measurement problems should be appa ren t .  
I n  Sec t ion  11, t h e  f o r m a l i z a t i o n  w i l l  beg in  wi th  a d e f i n i -  

t i o n  of measurement  which c l o s e l y  re la tes  t o  t h e  most g e n e r a l  
d e f i n i t i o n  suggested by Stevens i n  ( r e f .  1) .  P o s t u l a t e s  res t r ic t -  
i n g  t h e  form of  measurements a r e  s u c c e s s i v e l y  a p p l i e d  i n  Sec t ions  

I11 t o  V I 1 1  y i e l d i n g  t h e  nominal, o r d i n a l ,  i n t e r v a l ,  and r a t i o  
scales o f  measurement as w e l l  a s  several  o t h e r s .  Assoc ia ted  

d e f i n i t i o n s  and theorems concerning scale equiva lences  and i n v a r i -  
ances  under sets o f  t r ans fo rma t ions  ( f u n c t i o n s )  a r e  developed 

f o r  t h e  va r ious  scale types .  I n  Sec t ion  L X ,  t h e s e  r e s u l t s  a r e  
summarized by a p i c t o r i a l  diagram of t h e  h i e r a r c h y  o r  ' spectrum'  

of measurement scale types .  
The fo rma l i za t ion  presented  i n  t h i s  r e p o r t  was o r i q i n a l l y  a 

p a r t  of t h e  a u t h o r ' s  unpublished t h e s i s  ( r e f .  6 )  and subsequent ly  
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appeared as an unpublished internal NASA memorandum. Reference 
to that memorandum by S. S. Stevens (ref. 7) led to a volume of 
requests for the unpublished paper, which in turn has encouraged 
this publication. Originally the formalization was developed 
independent of any knowledge of the extensive formalization pre- 
sented by Suppes and Zinnes (ref. 8). Subsequent comparisons 
have disclosed that Suppes and Zinnes have taken a significantly 
different approach to formalization, and that the arguments in 
this paper represent an interesting and, it is argued, better 
alternative model. 

The present formalization takes as fundamental the mappings 
from a domain into a range of measure values and the postulated 
structure of that range. From such, the notions of scale type, 
scale equivalences or isomorphisms, and invariances are d e r i v e d .  
Major differences from previous models thus include: the defini- 
tion of scale types in terms of the observed structure of the 
empirical data or domain, rather than in terms of invariances 
under certain transformations; the avoidance of numbers as 
measures until the scale type incorporates most or all of the 
properties of number systems; and the explicit definition of 
"equivalences" of two nominal scales, ordinal scales, or what- 
have-you. In contrast, Suppes and Zinnes considered as funda- 
mental to their model the concepts of scale type, isomorphisms, 
and relational systems, and defined scales in terms of invariances. 
More complete discussion of these differences and their relation 
to present disputes in measurement theory is forthcoming- 

11. - MEASUREMENTS 

The general theory of measurement has provided basic prin- 
ciples for the development of adequate measures of quantities 
like length, temperature, heat, weight, economic utility, com- 
plexity, etc. Within measurement theory (refs. 1-3, 9-16), 
measurement is specifically defined, its functions discussed, 
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and postulates and theorems about acceptable measures are pre- 
sented. For example, Stevens (ref. 1, p. 22)  has defined 
measurement as follows: "Measurement is the assignment of 
numerals to objects or events according to rules." Thus, 
measurement is hsually considered to require the assignment of 
a number, or a position on a scale, to each of a set of events 
or items. 

Actually, it is conceivable that one could define a measure- 
ment process which assigned the members of a n y  set M to the class 
of items being 'measured.' It need not be that most obvious 
available class, the real numbers (or any subset of the reals), 
even though the detailed mathematics available for the set of 
real numbers justifies its frequent use. In fact, the assignment 
need not even be in accordance with any explicit rules which 
assign a fixed set of 'values' for each item being measured. 

Yet, to have useful properties emerge from the assignment, it 
is reasonable to require, as Stevens does, that the assignment 
be in accordance with an explicit rule which consistently assigns 
the same values or measures to each item. Such conditions are, 
at this point, quite inclusive, so that any assignment which is 
not random would be allowed as a possible assignment rule. 

Thus, it is reasonable to present a general definition that 
asserts the following description. 

Definition 1 

A measurement is an (explicit) assignment of a number of 
elements of a set M to each of the objects or events in a domain 
D. Thus, a measurement is a binary relation* R such that, for 
each I.ED, I.Rm. holds for elements m 
M. Each element m. for which I.Rm. holds will be called a 

in some subset M of 
j 3 3 3Yi j,i 

3 ,i 3 3ri 

*For description of the properties of binary relations, functions, 
orderings, and other mathematical terms used in the following 
discussion, see (ref. 171, Chapter 2, (ref. 18) , pp. 5-10, or 
(ref. l), pp. 4-21. 
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measure of I . If I.Rm for some m.EM, we say I is b e i n g  
measured;  the set D is b e i n g  measured if each I.ED is being 
measured. 

j i j  7 j 

7 

This definition allows arbitrary "multi-valued assignments" 
of measures to each item, in accordance with a broad interpre- 
tation of Stevens' definition. It is obviously quite general, 
but its generality would appear to be the very cause of its 
relative uselessness. A s  shall be seen, providing some further 
restrictions on the form of measurements will allow the develop- 
ment of an interesting hierarchy of measurement scales and 
associated theorems. 

The class of acceptable assignments will be narrowed by 
successively adding new postulates which delineate the formal 
properties of acceptable measures. Thus, important formal 
properties of measurements will be e x p l i c i t l y  presented by the 
stated postulates and demonstrated theorems. This method has 
been used to develop a systematic (axiomatic) theory of c o m p l e x i t y  
measuremen t ,  by stating theoretical assumptions and theorems 
which lead to predictions open to empirical verification (ref. 6). 
In this report, results will apply to any form of measurements 
satisfying the postulates. 

Stevens (ref. 2, p. 26) has pointed out that: 

" A n  o p e r a t i o n  for d e t e r m i n i n g  e q k a l i t y  i s  
o b v i o u s l y  t h e  f i r s t  s t e p  i n  measurement ,  b u t  
i t  i s  more t h a n  t h a t .  I t  i s  t h e  b a s i s  of a l l  
our  c a t e g o r i z i n g  and c o n c e p t u a l i z i n g  ( r e f .  19) - 
of a12 our  c o d i n g  and r e c o r d i n g  of i n f o r m a t i o n .  
I t  . . . p  r o v i d e s  t h e  b a s i s  of o u r  i d e n t i f y i n g ,  
r e c o g n i z i n g ,  and Z a b e l i n g  o r d i n a r y  o b j e c t s .  
W i t h o u t  t h i s  s t e p ,  no f u r t h e r  measurement  would 
be  p o s s i b l e .  

To be able to provide for any form of equality of measured 
values, we require that an equality relation be defined on the 
set M of measures. 
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Postulate MP-1. - There is an equality relation = defined on 
M such that, for any m m mk&M: j '  k' 

(= is reflexive) 
= m *  (= is symmetric) 

j 
(i) m = m 

j 

j 
j j 

k j 
(ii) m = mk -f m 
(iii) m = mk, ink = mk + m = mk (= is transitive) 

Now any practical case of measurement, (e.g., certainly in 
the case of complexity) would require that the assignment be a 
single-valued function. That is, for any given item to be 
measured, such as the length of a rod, a temperature, or the 
syntactical complexity of a structured expression, a measuring 
technique which assigned a single value to the item would be 
desired. Thus, a rod being simultaneously 2 inches long and 
43 inches long, a temperature being simultaneously 10 degrees 
centigrade and 90 degrees centigrade, or a sentence having com- 
plexity values of both 2 and 7 of the same units are undesirable. 
(This, of course, does not exclude the possibility of having 
separate alternative assignments which say a rod is both 2 feet 
long and 24 inches long; a temperature is 100 degrees centigrade, 
212 degrees Fahrenheit, and 3 7 3  degrees Kelvin; or a sentence 
has a 'depth' of 7 and a 'nesting' of 2 (ref. 6 ) .  This use of 
different units and different additive constants will be discussed 
below as the possible result of different scaZes  of measurement.) 

This reasonable requirement for a single-value measurement 
can be stated by a general postulate of the form: 
Postulate MP-2. - Measurements are to be s i n g Z e - v a l u e d  functions 
defined on the domain D of measured items and mapping into the 
chosen set M (in symbols, f: D + M). That is, the assignment is 
to be a function f which pairs f(1.) = m.(&M) with iten such 

that** f(Ij) # f(Ik) -f I j # Ik, for all I 1' Ik&D, and I j # Ik 
meaning that I 

7 3 'j 

and Ik are not the same item of D. 
j 

*The notation '' - + - 'I means "if - , then - ' I ,  or, equivalently, 
I' implies - ." 
equality relation =. 

- 
**The notation 'I # - 'I means I' - is not equal to - " under 



A single-valued function f defines an equivalence relation 
on the set D of items being measured, so that two items of D are 
considered 'equivalent' (Ij = I ) if they have the same measure, -f k 
or image under the map f: 

Definition 2 

We will say, for I Ik&D, that Ij Ef Ik (read "I 
is f-equivalent to Ik") ifland only if, 

and Ik 
j' j 

are f - e q u i v a Z e n t , "  or "1 
j 

f (I.) = f (Ik). 
3 
The known properties of the equality relation (=) on the 

set M lead directly to the following theorem. 
Theorem 1. - The binary relation E is an equivalence relation. 
(That is, it is (i) reflexive, (ii) symmetric, and (iii) transi- 
tive. ) 
Proof. Consider I Ik, Im&D. We need to show: 

(i) Reflexivity: 
Since f(1.) = f(1.) by the single-valued property of f, then by 
definition 2, 

(ii) Symmetry: I Ef Ik 

Ij 'f Ik 7 k 
of = o n M ,  f(I.1 = f(1,) -f f(Ik) = f(1.). Hence, f(Ik) = f(I.1, 
and thus, by definition 2, 

f 

j' 

5 'f Ij 
3 7 

Ij 'f 5. 
= I  'k -f j j 

+ f(1.) = f(1 ) by definition 2. Then, by symmetry 

7 7 7 

Y Ik Ef I 
(iii) Transitivity: I sf Ik, Ik Ef Im -+ Ij Zf I" j 

-f f(I.1 = f(I ) and Ik Zf I m +  f ( I k )  = f(Im) by Ij '5 I k  7 k 
definition 2. 

Hence, by transitivity of =, f (I.) = f (I,). Thus, by definition 
I) 

2 again, Ij '5 'ma ///* 
Thus, a measurement satisfying Postulate MP-2 defines an 

equivalence relation 3 on D. As with any equivalence relation, 
we can define equ ivaZence  c Z a s s e s  [I.] = {I 11 = I 1 ,  and the 
set D/ Z of equivalence classes (D/ Z f  = {[Ij]lIj&D})(cf. ref. 

f 
7 k j - f  k 

f 
20,  p. 2 ) .  

*We shall use the symbol /// to mark the end of a proof. 
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Figure la illustrates pictorially the case of a multi-valued 
assignment such as is excluded by Postulate MP-2, while Figure lb 
shows one possible (acceptable) single-valued assignment. 

am f I 

b d ?  4 a7; 
C b/.3 

d e  - 4  

DOMAIN D (a)  RANGE M DOMAIN D (b) RANGE M 

Figure 1. - Multi-valued and single-valued assignments 

Postulate MP-2 prevents the "fanning-out" from the domain D 
(as shown in Figure la from item c to 1, 5 ,  and 6, from b to 2, 

3, and 4 ,  and from d to 5 and 61, but does not eliminate the 
possible fanning i n t o  t h e  r a n g e ,  as illustrated (for a and b to 
value 1) in Figure lb. The latter would be eliminated by restrict- 
ing assignments to one-one functions (refs. 1,2,21; p. 176). How- 
ever, in the sense in which the domain is the set of o b j e c t s  to 
which properties are attributed and measured (and the domain is 
not the intuitive class properties which are quantitatively 
described by the measurements), the measurements are not sensibly 
assigned by one-one functions. One-one functions would require 
that only one object could have each value. But, clearly, there 
are an indefinite number of objects which may have any given 
value of length, temperature, weight, or complexity. 

On the other hand, one couZd define a one-one function from 
the set D/ Ef of equivalence classes resulting from equivalence 
relation Z to the set M of measurement values. (This is effec- 
tively what Russell (ref. 21, p. 3 3 )  suggests and Stevens 
(refs. 1,2) does.) The results of such a map would be similar 
to those of the map directly from D to M, with the exception of 
the new map making no distinction whatever between members of 
each class. But, when we consider comparing two or more alter- 
native measurements which give different (intersecting) equivalence 

f 
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classes, we will wish to consider the individual items, since 
two items which are in the same equivalence class under one 
measurement may not be in the same class under another measure- 
ment. Hence, for the purposes of developing a theory capable of 
comparing alternative measures, it will be useful to consider 
both the single-valued assignments from D to M and the one-one 
functions from the set D/ G of equivalence classes to M. f 

111. - NOMINAL MEASUREMENT SCALES 
At this point, we have reached substantially the restric- 

tions imposed by "nominal" scales, the broadest (least restric- 
tive) class of measurements (or, measurement 'scales') proposed 
by Stevens in his extensive work (refs. 1,2) on measurement 
theory. Thus, based on Stevens' work (ref. 1, pp. 25-26, ref. 2, 
p.  2 5 ) ,  we may define a nominal measurement as follows: 

9efinition 3 

A nomina2 m e a s u r e m e n t  is one which satisfies Postulates MP-1 
and MP-2. 
set up by a nominal measurement f. 

A nomina2 s c a l e  is the set D/ Ef of equivalence classes 

Stevens' approach has been to "classify scales of measure- 
ment in terms of the group of transformations that leave the 
scale form invariant" (ref. 1, p. 23). For example, if one has 
a measurement scale or assignment of values which is simply 
classificatory or nominal, so that no interrelationships between 
members of the domain D are defined except equivalence of ele- 
ments, one obtains Stevens' "nominal scale". In accordance 
with Postulate MP-2, the assignment for a nominal scale essen- 
tially says merely that one must not assign two or more different 
numbers to the same member of D. ( A l s o ,  it follows directly from 
the definition of and the associated equivalence classes that 
one cannot assign the same measure to two distinct equivalence 
classes.) Thus, any single-valued function defined on the domain 
D gives a nominal scale. 

f 
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A s  a s t e p  toward fo rma l i z ing  S tevens '  concept of scale 

i n v a r i a n c e ,  w e  may d e f i n e  what it means f o r  t w o  scales t o  be 
nominally e q u i v a l e n t .  

D e f i n i t i o n  ~ __ 4 

only  i f  f o r  a l l  I I k & D ,  f ( 1 . )  = f ( I k ) t ) g ( I . )  = g ( I k )  .* That 
j '  I 7 

i s ,  t w o  measurements are nomina l ly . equ iva len t  i f  and only i f  they  
p a r t i t i o n  D i n t o  t h e  s a m e  equiva lence  classes: D/ E = D/ E 

Nominal measurements f and g are nominaZZy e q u i v a Z e n t  i f  and 

f g 
Then, i n v a r i a n c e  f o r  t h e  nominal scale may be de f ined :  

D e f i n i t i o n  5 

A nominal measurement scale D/ i s  s a i d  t o  be nominaZZy 
invariant under a set  T of t r ans fo rma t ions  i f  and on ly  i f ,  f o r  
a l l  t & T ,  map f and composite map t * f  are nominally e q u i v a l e n t ,  

- 

so t h a t  D/ E f = D/ Z t - f '  where  D/ f t * f  i s  t h e  set  of equivalence 

c l a s s e s  r e s u l t i n g  from t h e  composite measurement t * f :  D -f M .  

( I n  o t h e r  words, D/ Z i s  nominally i n v a r i a n t  under T i f  and 
only i f ,  f o r  a l l  t E T  and a l l  I I E D ,  f ( 1 . )  = f ( I k )  < / 

- f 

j '  k 7 
t [ f ( l j ) l  = t [ f ( I k ) I . )  

S tevens '  comments ( refs .  1,2) t o  t h e  e f f e c t  t h a t  nominal 
scales are i n v a r i a n t  under t h e  set  of one-one f u n c t i o n s  may now 
be formalized.  
Theorem - 2 .  - A nominal scale i s  nominally i n v a r i a n t  under t h e  
s e t * *  of a l l  (and only the***) one-one f u n c t i o n s  de f ined  on t h e  
set  of images of f .  

*The express ion  form A-B, meaning "A i f  and only i f  B," i s  

**Actual ly ,  t h e  s e t  of a l l  such one-one f u n c t i o n s  form a g r o u p  
e q u i v a l e n t  t o  A -f B and B -f A. 

( r e f .  2 ,  pp. 17-19)  under t h e  ope ra t ion  of f u n c t i o n  composition. 

of one-one f u n c t i o n s  i s  t h e  l a r g e s t  set  of  func t ions  which, 
ope ra t ing  on one nominal s c a l e ,  y i e l d  another  nominal s c a l e  
which i s  e q u i v a l e n t  t o  t h e  given s c a l e .  The cond i t ion  
f ( 1 j )  = f ( I k )  + t * f ( I - )  = t * f ( I k )  r e q u i r e s  t h a t  t be s i n g l e  
va lued ,  and t h e  condigion t * f ( I j )  = t * f ( I k )  + f ( I j )  = f ( I k )  
r e q u i r e s  t h a t  t be one-one. 

***I t  should be obvious from d e f i n i t i o n s  3 and 5 t h a t  t h e  s e t  
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Proof. - Let f: D +. M be a nominal measurement, and g(x) be 
any one-one function defined on the set of images of f, so that 
g[f(Ij)] is defined for all I.&D. 
for all I.&D, h(I.1 = g[f(I.)]. 
and thus, by the single-valued property of g, g[f (I .)I = g[f (Ik)]. 

3 
Now, if Ij $f Ik, then f(1.) # f(Ik) by definition 2, and hence 
g[f(I.)] # g[f(Ik)] by the one-one property of g. According to 
the paranthetical clause in definition 5, this is sufficient to 
prove that the scale in invariant under g, but we may also go 
one step more to note that thus h(I.1 # h(Ik), and hence 

Define h: D +. M such that, 
+. f(1.) = f(Ik), 

3 3 3 Then Ij 'f Ik 3 

7 

7 

3 
Since this is true for all I Ik&D, we 

j' 
I Ef Ike+I  Gh Ik. 
j j 

have D/ E = D/ and hence the scale is indeed invariant 
under g. Since g was an arbitrary one-one function on the image 
set f(D), the nominal scale is invariant under all such one-one 

f h' 

functions. /// 
Hence, we can say that the nominal scale is of a form such 

that any single-valued function on D yields a nominal scale (see 
p. lo), and operating on any given nominal scale with a one-one 
function will yield another nominal scale of the same form (same 
equivalence classes.) 

A common example of a nominal scale is the numbering of 
football players on a team. However, in contrast to the practi- 
cal case of a one-one mapping for players, we would not require 
that each player have a different number, for an arbitrary 
nominal scale. We would merely require that any one player have 
only one number assigned to him. An example which corresponds 
more closely with reality (i.e., with arbitrary single-valued 
functions) is the assignment of type or model numbers to classes 
of items, such as on TV sets, radios, etc. Each class of items 
has an assigned number, but no class or item is assigned more 
than one model number. 

An important practical example of a nominal measurement 
scale has been presented (ref. 6 ,  pp. 79-81). The importance 
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of this example to electrical engineering and the theory of 
computation justifies its careful consideration here, since it 
displays a practical manifestation of the present mathematical 
model. This example is concerned with the assignment of "state 
variable" values in switching circuits and associated Boolean 
expressions. 

Boolean expressions representing the behavior of a switching 
network are formed by recursive processes of Boolean addition 
and multiplication of s t a t e  v a r i a b 2 e s  (refs. 22,23). The state 
variables represent the possible "open" or "closed" states of 
switches, or the ''on" or ''off" conditions of signals in a gate 
network. The actual assignment of numerical state values to 
the switches or gate terminals is an interesting example of 
nominal scale assignments. As Caldwell (ref. 22, p. 35) explains 
the matter: 

! ' . . . a  g i v e n  v a r i a b l e  symbo2 i zes  t h e  c o n d i t i o n  
o r  s t a t e  of a c i r c u i t  e l e m e n t  o r  a group of c i r c u i t  
e l e m e n t s ;  i t  has  no numer ica2  s i g n i f i c a n c e  o r  v a l u e  
because  t h e r e  is n o t h i n g  abou t  a c o n d i t i o n  o r  s t a t e  
which  has u n i v e r s a 2 2 y  measurab le  meaning .  We can 
say  t h a t  a c i r c u i t  is t u r n e d  o n  o r  t h a t  i t  is t u r n e d  
off ,  b u t  we canno t  answer t h e  q u e s t i o n  'How much is 
I t o n  It and how much i s  "o f f " , '  e x c e p t  t o  say  t h a t  i t  
is a 2 2  on o r  a22 o f f . "  

All one can say, a p r i o r i ,  is that the two assumed states are 
d i s t i n g u i s h a b Z e ,  like nonequivalent classes or items measured 
by a nominal scale. Thus, a s t a t e  v a r i a b 2 e  is r e p r e s e n t a b l e  b y  
a nomina2 measuremen t ,  in which any given position of a switch 
or value of a voltage (or current) will be assigned one or the 
other state "value." The two states may be arbitrarily labelled 
" 0 "  and "l", or ''off" and 'Ion", rropen" and l'closed", etc., as 
shown in Figure 2. There is nothing sacred about any of these 
pairs of labels since even a (consistent) r e v e r s a l  of the two 
labels will not affect the algebra of switching circuits, as 
long as the labels are likewise reversed in the postulates of 
the switching algebra (ref. 22, pp. 33-45). 
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"0 PEN 'I "CLOSED" 

"0" 
I 

Figure 2. - State variables illustrate nominal measurements 

The state labels are selected purely for convenience and to 
correspond with natural descriptions of physical networks. Yet, 
even such physical correspondence is not unique, as the use of 
"transmission" and "hindrance" conventions demonstrates (Figure 2, 
ref. 22, pp. 45-49 or ref. 23, Sections 2.2 and 2.3). 

For gate networks, it is likewise a matter of convention 
whether a "1" will correspond to a voltage of +Vo, 0, or -Vo and 
a " 0 "  will correspond to 0 or -Vo, fVo, or +Vo, respectively 
(ref. 23, Section 2.4). This again illustrates the nominal equi- 
valence of any such alternative choices or conventions. 

In summary, then, it is clear that the state variable assign- 
ment in Boolean expressions is a good practical example of a 
(rather simple) nominal measurement. However, in this example, 
as well as those of the football players and appliance model 
numbers (as in most examples given for nominal scales (ref. 1, 
p. 25, ref. 2, p. 25)), the assumption is often made that the 
image set M is the set of real numbers (or a subset of the reals). 
But this need not be. The numbers assigned as measures are used 
only as labels or category symbols, and words or letters or any 
of many other symbols might serve as well. It is only as we 
consider o r d e r i n g  and other properties exhibited by the real 
numbers that we see the usefulness of M being considered as the 
reals or some subset of them. 
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IV. - ORDER SCALES 

Stevens recognized the value of measurement scales which 
involved ordering of the measure values, and from this came his 
"ordinal scales", which will be discussed in Section 5. These 
scales involved both ordering and the equivalence relation stipu- 
lated by Postulate MP-2. However, it is appropriate here to 
consider briefly a type of scale which he did not explicitly dis- 
cuss and which is more general than his ordinal scales. This is 
the order scale, which satisfies the following postulate: 
Postulate-MP-2'*. - There is a partial ordering relation < defined 
on M, such that, for some (but not all) m mk&M, m < mk (i.e., 1' j 
m 'lis less than" mk) - 
j 

We may now define an order measurement and scale. 

Definition - 6 

An o r d e r  measurement  f is one satisfying Postulate MP-2' 
(so that for the set M, there exists a partial ordering of 
measures, but with no requirement that an equivalence relation 
be defined on the set of measures.) An o r d e r  s c a l e  is the set 
0 of sets of elements which are less than each element of M: 
0 = {A. I l<j<n) where A = {mj I mi<m.l and M = {m. I lljln). 7 j 7 7 

Equivalence and invariance may now be defined for order 
measurements and scales. 

Cefinition 7 

Order measurements f and g are o r d e r  e q u i v a l e n t  if, and 
only if, f(Ij) < f(Ik)-g(Ij) < g(Ik).** 

*This postulate will be used only in this section, to define and 
discuss order scales. Consequently, it is given a number MP-2' 
(rather than MP-3) which is different from the other postulates, 
so that the number of the other postulates may form a complete 
consistent sequence. 

measurement studies (ref. 6, p. 103). It is: Measurement g 
is o r d e r - c o n s i s t e n t  with measurement f if, and only if, 

**A weaker condition has also been shown to be useful in some 

f(I.1 < f(Ik) -t g(Ij) < g(Ik). 
7 
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Definition 8 
~ 

An order scale is said to be o r d e r  i n v a r i a n t  under a set T 
of transformations if, and only if, for all teT, t and t=f are 
order equivalent (i.e., f(1.) < f(Ik)-t*f(I.) < t*f(Ik)). 

Thus, under order equivalence and invariance, only the 
relative ordering of items is important, and nothing is said 
about equivalence of elements under the two measurements*. This 
is in marked contrast to the ordinaZ scales of Stevens, which 
will now be considered. 

3 3 

V. - ORDINAL SCALES 

Order scales neglect any equivalences between elements of 
the measured set. And, on the other hand, the nominal scale 
does not allow us to say much of quantitative interest. For 
example, the definition of a nominal scale does not provide for 
any relative ordering of the elements. Hence, for such a scale, 
one cannot meaningfully say "item I 
''I is more complex than I ' I ,  etc. 

is longer than Item Ikl', 
j 

j k 
Actually, to achieve the interesting case in which items of 

the domain are ordered, we need to add the necessary conditions 
to obtain Stevens' o r d i n a l  s c a l e .  For an ordinal scale, it is 
possible to determine which of two measured items is greater than 
the other (in terms of the property being measured), or if they 
are equivalent. That is, the function f which measures elements 
of D defines a complete ordering of the items of D. 

In almost all measurements (e.g., in particular, in com- 
plexity measurement) (ref. 6 ) ,  we desire this complete ordering. 
We do want to be able to say whether an expression I is more 
complex than Ik ,  or of equal complexity, and we want conditions 
like transitivity to hold, so if any expression I is less 

j 

j 

*This resembles Coombs' work with metric scales (refs. 12,13,14) 
(also, ref. 2, pp. 34-36), for which only ordering of items is 
defined. 
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complex than another Ik, and Ik is less complex than I m' then 
I 
the following postulate. 
Postulate MP-3. - There is a total-ordering relation < defined 
on M such that, for any m m mREM*: 

is less complex than Im. Thus, it is reasonable to propose 
j 

j' k' 

(i) mj P mj ( <  is irreflexive) 
(<  is asymmetrical) 
(<  is transitive) 

(ii) m 

(iv) m < m or mk < m or m - (< is a total ordering) 

< mk + mk p mj 
(iii)m < m  m < m  + m  < m  

j 
j k '  k R j R 
j k' j' j - mk 

The total ordering < of M and the measurement function f: 
D + M define a natural ordering relation on the set D being 
measured, as follows. 
Definition 9 

A binary relation <f is defined. on the domain D, such that, 
for nominal measurement f and any I Ik&D, j' 

where (the unsubscripted < is the total ordering relation on M 
postualted in MP-3. 
Theorem 3. - The binary Cf of Definition 9 is a "quasi-serialn** 
ordering relation on D; that is, for any Ij, Ik, Im&D : 

(i) Ij Pf Ij 
+ I  p I . (cf is asymmetrical) (ii) Ij <f Ik 

(iii) Ij <f Ik, 
(iv) either I < (cf is a quasi-serial 

(<f is irreflexive) 

k f j  

- j,f 'k' 'k <f 'j' 

I + I  < I (<f is transitive) 'k <f m j f m  

ordering) or I - j -f k '  

I' means I' is not less than .I1 In *The notation I' f -  
considering theirreflexive ('less than') order relations here 
rather than the reflexive order relations ('less than or equal 
to'), we are following the common practice in measurement theory 
(refs. 1,2,16). Although the chosen irreflexive relations have 
a somewhat closer relation to empirical operations, either form 
of relation is adequate. 

with Caw's definition (ref. 11). 
**A quasi-serial ordering is here defined in (iv) in accordance 
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Proof. - The proofs of (i), (ii), and (iii) follow directly from 
Definition 9 and the irreflexive, asymmetric, and transitive 
properties of <, and parallel the proof of Theorem 1. To see 
that either Ij <f Ik, Ik <f Ij, or I Ef Ik, 

Then, trary case. First, suppose I 
f (I . )  % f (Ik). But, by Postulate MP-3 (iv) , 
f(1.) = f(Ik) or f(Ik) < f(1.); hence either 
nition 2, or else Ik <f If by Definition 9. 

j 
j 'f 'k' 

7 

7 7 

consider each con- 
by Definition 9, 
then either 
I = I by Defi- 
Similar reasoning 
j -f k 

shows that I,< Pf Ij implies that either Ik Ef Ij or Ij <f Ik. 
Finally, if I 
by Postulate MP-3 (iv), either f (I . )  < f (Ik) or f (Ik) < f (I.), 
and, hence, by Definition 9, either Ij <f Ik 

then f (I.) # f (Ik) by Definition 2. Then, 
j 'f 'k' 7 

7 7 
o r 1  < I /// k f j '  

We may now define an ordinal measurement. 

Definition - . . 1 0  

An ordinal measurement f is one satisfying Postulates MP-1, 
MP-2, and MP-3, so that the measured set is ordered by < (of 
Definition 9). An ordinal scale is the totally ordered set 
D/ E of equivalence classes. Or, more precisely, the ordinal 

f 

f 
scale is the pair D/ ! < / consisting of set D/ of f' € f f 
equivalence classes and the total ordering relation <f/ Ef defined 
on D/ E such that [Ii] <f/ ff [Ik] if, and only if, Ii cf Ik. f 

2 4 

Clearly, each ordinal measurement is a nominal measurement. 
Measurement is often considered to require a t  least the 

properties of the ordinal scale. For example, Caws (ref. 11, p.5) 
defined measurement as follows: 

"Measurement is the assignment of particular 
mathematical characteristics to conceptual enti- 
ties in such a way as to permit ( Z )  a n  unambiguous 
mathematical description of every situation involv- 
ing the entity and ( 2 )  the arrangement of all 
occurrences of it in a quasi-serial order." 

A "quasi-serial ordering" is "an order which determines, for any 
two occurrences, either that they are equivalent with respect to 
the property in question of that one is greater than the other" 
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(ref. 11). Here, Caws' property (1) suggests the single-valued 
function assignment, and ( 2 )  suggests the ordering of an ordinal 
measurement. 

Now, in analogous manner to the establishment of the range 
of structural invariance for a nominal scale, we may define an 
equivalence for ordinal measurements. 

Definition 11 

Ordinal measurements f and g are ordinaZZy equivaZent if, 
I,ED, f(1.) = f(I,)-g(I.) = g(Ik), and only if, for all I 

and f(1.) < f(Ik)-g(I.) < g(Ik). That is, two ordinal measure- 
ments are ordinally equivalent if, and only if, they are nominally 
equivalent and establish the same relative ordering of the domain D. 

j '  3 3 

3 7 

Invariance for the ordinal scale may then be defined. 

Definition 12 

An ordinal scale is said to be ordinaZZy invariant under a 
set T of transformations if, and only if, for all tET, f and t*f 
are ordinally equivalent. (Thus, D/ E is ordinally invariant 
under T if, and only if, for all tET and all I Ik€D, 

f 

j f  

f(1.) = f(I,)-E+t[f(I.)l = t[f(Ik)l 
3 3 

and 

Hence, if a set of transformations preserves the equivalences 
and ordering of a measurement, the ordinal scale is invariant 
under them. Now, in accordance with Stevens' informal comments 
about the range of invariance of ordinal scales, we may state: 
Theorem 4. - An ordinal scale is ordinally invariant under the 
set (and only the set) of all monotonically increasing functions 
(that is, functions p for which x < y -f p ( x )  < p (y)). 
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Proof. - Let f: D + M be an ordinal measurement and p be any 
monotonically increasing function (that is, x < y + p (x) < p (y) ) 
defined on the set f (D) of images of f, so that p[f (I .)] is 
defined for all I.&D. Since p is a function, it is immediate 
that f(1.) = f(Ik) + p[f(Ij)] = p[f(Ik)]. Now, the monotonic 
function p must be a one-one function (since, if x # y and 
p(x) = p(y) , then either x < y and p(x) $ p(y) or else y < x 
and p(y) $ p(x), in contradiction to the assumed monotone beha- 
vior). Thus, by Theorem 2 and Definition 5, 

3 

3 

3 

NOW, f(Ij) < f(Ik) + p[f(Ij)] < p[f(Ik)], by the monotone 
Conversely, p[f(Ij)l < p[f(~~)]+f(~.) < f(Ik) property of p. 

by the one-one property of p. Hence, 
3 

Since this is true for all I 
tonically increasing function, the scale is invariant under the 
set of all monotonically increasing functions defined on f(D). 

To see that the set of monotonically increasing functions 
is the largest set of transformations yielding ordinal equiva- 
lence, note that nominal equivalence requires t to be a one-one 
function (see Theorem 2 and footnote). The added condition 
f(I.1 < f(Ik) + t[f(Ij)] < t[f(Ik)] requires t to be monotonically 

Ik€D, and p is an arbitrary mono- 
j' 

3 
increasing, by definition. /// 

Thus, any monotonically increasing function operating on an 
ordinal scale gives another ordinal scale with the same equiva- 
lence classes and with the relative ordering of items preserved. 
There is a meaningful sense in which such scales are "equivalent," 
since if one such scale says two items are equal, so does the 
other, and if one says item I is 'less' (less length, lower 
temperature, less complexity, etc.) than another item Ik, then 

j 
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the other scale likewise says I 
ment of ordinal scales is thus a formalization of the intuitive 
sense in which two scales are similar if they order the items 
of the domain in the same r e Z a t i v e  way. 

is less than Ik. This develop- 
j 

For a simple example, consider the ordinal scales f(x) and 
g(x) in Figure 3. Although the two scales assign different 
values to some of.the items, and although the intervals between 
the ordered items are not constant, the two scales do maintain 
the same relative ordering of the items and are thus in this 
sense equivalent. 

X 

1 
2 

3 

4 

5 
~ 

Figure 3. - Two ordinally-equivalent scales 

We can relate ordinal equivalence to nominal and order equi- 
valence by the obvious theorem: 
Theorem 5. - Two measurements f and g are ordinally equivalent 
if, and only if, they are nominally equivalent and order 
equivalent. 
Proof. - The proof follows directly from Definitions 4, 7, 
and 11. /// 

VI. - GENERALIZED INTERVAL SCALES 

Although measurements f and g in Figure 3 are ordinally 
equivalent, there is also an obvious sense in which they differ. 
In particular, the i n t e r v a Z s  between measures as assigned by 
the two scales are not simply related. For the illustrated real 
number assignments, the interval between a and b is equal to that 
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between d and e for measurement f, but they are not assigned 
equal intervals by measurement g. In general, ordinal scales 
may not include any provision for establishing equality of inter- 
vals. The operation of equating intervals between measures is 
the basis of the intervaZ scaZe. That is, the interval scale 
is obtained by postulating a stronger relationship between mem- 
bers of M than just a total ordering. Not only is it assumed 
that one is able to determine if one element is less than another, 
but also whether or not the interval between two elements m and 
m is equal to that between m and m . j 
k P 9 

Actually, the invariance of the ordinal scale under mono- 
tonic transformations (Theorem 4) suggests the possibility of 
preserving ordinal scale form under the very simple case of scale 
t r a n s Z a t i o n s ,  or uniform shifting of values. This is, in fact, 
the very process involved in empirically comparing intervals 
between measures. When one, for example, wants to see if rod (a) 
is as much longer than rod (b) as rod (c) is than rod (d); one 
can mark the intervals on the long rods, place the intervals side 
by side, and attempt to match both ends simultaneously (just as 
he does in comparing any two lengths). Thus, one performs a 
translation on the one interval to attempt to bring it into 
coincidence with the other. This empirical operation of equating 
intervals can be used as a basis for developing the properties 
of the interval scale, by postulating the existence of a group 
of suitable 'translations' such that one can define a binary 
(equivalence) relation =D= between pairs of measure values. The 
relation =D= holds for pairs (mj, m ) and (mp, mq) (i.e., the 
intervals between m and mk and between m and m are equal) if 

k 
j P cl 

a translation in the group maps the endpoints j and k to end- 
points p and q, respectively. Thus, we might reasonably propose* 
the following postulate. 

*I am indebted to Dr. Dirk vanDalen for several suggestions as 
to how to formalize this and other postulates in measurement 
theory. 
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if m # 
if, for 

We 

j 

and may 
between 

It 

Postulate MP-4. - There exists a group (S;) of functions ("shift- 
ing functions") such that, for each s E S ,  s:M + M is a monoton- 
ically increasing function, the group operation is composition 
of functions*, and s(mi) = m i + s = I, where I is the identity 

map (i.e., s(mi) = m 
a relation =D= on the pairs (m 

+ s(m.1 = m.) for all m.&M). 

, then (m 

P 7 q 

We can define i 7 7 7 
j '  j '  

mk) where m 
mk) =D= (m mk and m 

some SES,  m = s (m.) and m = s (m,) . 

mkEM, such that, 
m ) if, and only P mq j' P' q 

shall sometimes write 

j 
m - mk = m - m for P q (mj, mk) =D= (m m ), P' q 

express either in words as "the interval (or distance) 
m and m is equal to that between m and m . ' I  

should be apparent that it is the form of the group (S;) 
j k P q 

which will determine the nature of the "interval" of any parti- 
cular generalized interval scale. (For example, we shall discuss 
a linear interval, for which S = {sjs = x+b) and a logarithmic 
scale, for which S = {sls = ax}, when b and a are non-negative 
constants. ) 

The use of a group of monotonically increasing functions, 
which are also closely associated with invariance of ordinal 
scales, suggests this alternative postulate of the ability to 
equate 'intervals**. 
Postulate MP-4'. ~~ - - There exists a group (S;) of monotonically 
increasing functions operating on M, such that, if SES,  then 

*That is, all the properties of a mathematical group are satis- 
fied for ( S , * ) .  Thus, if s & S ,  t&S, then t*s&S, etc. (ref. 1). 

**The equivalence of Postulates MP-4 and MP-4' is only suggested 
here, and not proven. In fact, the formulation of interval 
scale postulates as presented here is quite tentative and open 
to further study. For example, it is not clear whether or not 
the generalized interval scale as developed here is of signifi- 
cant practical interest to measurement theory. It is, however, 
a concise generalization of interval concepts as they have been 
presented in Stevens' work with linear and logarithmic interval 
scales. 

2 2  

. . . . . .. . 



s(m.) = m + s = I, and such that we can define a relation =D= 
on the pairs (m mk) ( E M  X MI , with (mj , mk) =D=(  mp' mq) if, 
and only if, each interval 

1 i 

j' 

(ma I mj 5 ma, ma 5 mk and m m mQEM} j' k' 

taken as an ordinal scale is ordinally equivalent to the image 
interval 

5 
Cmr Im < m m < m and m = s(m.1, m = s(mk)) 

An immediate result of Postulate MP-4 (or MP-4') is the follow- 
ing theorem. 
Theorem 6. - The relation =D= is an equivalence relation. 
Proof. - The relation =D= is reflexive, since under the identity 
map m = I(m.1 and m = I mk) and hence (since IES for a group, 
and by definition of =D=) (m m ) =D= (m m ) The relation 
is likewise symmetric, si:-ce by definition, 

p - r' r - q' P 3 q 
f 

j 7 k 
j' k j '  k - 

= t(lnk) I (mj, mk) =D= (m , m ) -+ mp = t(mj) I m 
9 P q  

for some tES, and since an inverse map t-l exists in the group, 
for which m = t-I(m ) and mk = t-'(mq), and thus 

j P 

, m ) =D= (mj, mk) ("P 9 

by definition. Transitivity of =D= also follows from the defi- 
nition and group properties, as follows: 

m ), and (mj , mk) =D= (m 

(mp, m ) =D= (m,, m ), together 
P' 9 

q S 

imply all the following: 

t ( m )  = m  - t ( m )  =mr, 1 k  P' 2 P 
t ( m ) = m -  t ( m ) = m s  1 k  9' 2 q I 
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t2 ES. But by closure, 1' for some t 

(tlES and t2ES) + t*-tl€S . 

Hence, t2[t (m.)] = mr and t2[tl(mk)] = ms imply, by definition, 
that (mi, mk> =D= <m,, ms). 

1 1  

- 
We may now define a very general form of interval measure- 

> ment as follows. 

Definition 13 
? 

A g e n e r a l i z e d  i n t e r v a l  measurement  is one satisfying Postu- 
lates MP-1, MP-2, MP-3, and MP-4 (or MP-4'). (Thus, a generalized 
interval measurement orders the measured set by <f, and permits 
establishing whether the 'interval' between any two measures is 
equal to that between any other two measures.) A g e n e r a l i z e d  
i n t e r v a l  s c a l e  is the triple 
sisting of the equivalence classes of items measured, their 
relative ordering, and the equivalence classes of intervals 
between measures. 

(D/ Ff, cf/ :f, (M x M)/ =D=) con- 

Clearly, each generalized interval measurement is an ordinal 
measurement. The measurements satisfying Postulate MP-4 are here 
called g e n e r a l i z e d  interval measurements to distinguish them from 
Stevens' "interval scales." This appears necessary because 
Postulate MP-4 as presented here appears to allow a more general 
interpretation of an 'interval' than Stevens' l i n e a r  interval 
scale on the real numbers does. Postulate MP-4 suggests that 
any function which preserves order, matches endpoints, and is an 
element of a g r o u p  of functions which do not allow "dilation" or 
change of interval whenever one point in the interval is held 
constant is a suitable 'translation' operation for interval com- 
parison. This, in fact, allows a broader class of "interval- 
equating" operations than just the simple Z i n e a r  shifts achieved 
on number scales by subtraction. 
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This point needs further discussion. Stevens' interval 
scale is in fact a l i n e a r  interval scale, and may, for example, 
be contrasted with his recent presentation of a "logarithmic 
interval scale" (ref. 7, pp. 31-34]". The linear interval scale 
can, for real-number measurements, establish equality of differ- 
ences, such as 

7 - 2  = 9 - 4 ,  
i 

whereas the logarithmic interval scale establishes equality of 
I differences in l o g a r i t h m s  of numbers (or, in other words, equality 

of ratios) : 

log a - log b = log c - log d (or a/b = c/d). 

Now, it happens that the present formalization of Postulate MP-4 
is broad enough to include both these types of "intervals" (and 
many more). This may be an advantage, as a formal explication 
of the g e n e r a l  concept of 'interval' (or it may, for other 
reasons, be a disadvantage). The best formalization of the 
postulate of interval equality is apparently a problem open to 
further stud-y. 

The formalization of interval equality as outlined in Postu- 
late MP-4 does strongly suggest the central role played by the 
group (S, . )  of shifting functions or "scale translations". For 
the linear interval scale on numbers, this group would be that 
s u b g r o u p  of the group of monotonically increasing functions which 
corresponds to adding an arbitrary constant (number) to the given 
scale or subscale. Thus, we compare intervals on a linear scale 
by adding a constant number which will bring an endpoint of the 
interval into coincidence with the corresponding endpoint of the 
other interval. On the other hand, for the logarithmic interval 

t 

*A logarithmic scale is a generalized interval scale defined on 
the real numbers, for which the group (S,9 is the group of 
functions of the form S = mx, where m is a positive constant. 
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scale, we add a logarithm of a number (or equivalently, multiply 
by a constant) to get two interval endpoints to coincide for 
comparison. Thus, for the logarithmic interval scale, the group 
(S,.) corresponds to the operations of multiplying measures by 
constants. 

To restrict the group of shifting functions to those suitable 
for Stevens' interval scale requires adding considerable opera- 
tional structure to the set M. "Subtraction" of elements is not 
defined on an arbitrary ordered set M. Although it is not certain 

that the required postulates would be entirely as extensive as 
those needed for the definition of integers (or any such subset 
of the reals) and for the definition of operations like addition 
and subtraction, it appears that very nearly the same amount of 
postulated structure and definitions of operations would be 
required, to suitably define linear intervals such as are used in 
Stevens' interval scales. 

It should thus be clear why it is with the interval scales 
that one really begins to see the value of setting M to be some 
subset of the real numbers. The real numbers exhibit all the 
necessary structure to provide for simple definition of linear 
intervals. 

Until now, we have purposely avoided introducing the real 
numbers as the set M of measures, because the intricate structure 
of the real numbers is not needed in developing such loosely 
structured sets as those used for nominal and ordinal measure- 
ments (or even generalized interval measurements). To bring in 
the reals at these stages in the hierarchy of scales could mis- 
lead one into conceiving that all the properties of the real 
numbers are available for postulating and discussing the proper- 
ties of nominal, ordinal, and generalized interval scales. Be- 
sides, it would appear to be highly unsystematic to have intro- 
duced the numbers from the beginning and to have said (as Stevens' 
has essentially said) just that: with nominal scales we are 
neglecting all the properties of numbers except their equality 
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or inequality; with ordinal scales we are considering only the 
identities and relative ordering of numbers; with interval scales 
we are considering only the identities, relative ordering, and 
interval equalities, etc. It is much more in keeping with mathe- 
matical methodology to postulate onZy the identities (and single- 
valued functions) for nominal scales, to a d d  on ordering as a 
further constraint to get the subclass of ordinal scales, then 
to add the assumption of interval equality to obtain interval 
scales, etc. Thus, instead of admitting a fully structured set 
and "wastefully" neglecting all its structure, we postulate the 
minimum needed to achieve each desired result. 

It is only when we get close to having the full structure 
of the number system that is reasonable to introduce the numbers- 
just to avoid the needless and time-consuming repetition of many 
of the detailed postulates and properties of real numbers. Time 
does not permit the ideal detailed extension of the above pro- 
cedure here, by the postulation of the minimum needed for each 
of the (linear) i n t e r v a Z ,  ratio, and u n i q u e  measurement scales 
we shall develop. Hence, after developing the concepts of scale 
equivalence and invariance for generalized interval scales, we 
shall compromise and introduce the real numbers to permit efficient 
discussion of the linear interval, ratio, and unique scales. 

The shifting functions or translations discussed in connec- 
tion with Postulate MP-4 and Definition 13 are operations that 
move one from part of a measuring scale to another part of the 
same scale, for generalized interval comparison. We may now con- 
sider associating t w o  o r  more  interval measurements in terms of 
equivalence. 

Definition 14 

Generalized interval measurements f and 9 are s e p a r a t i o n a Z Z y  
e q u i v a Z e n t  if, and only if, for all Ij, Ik, I I ED, P' q 
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and 

1 

That is, two generalized interval measurements are separationally 
equivalent if, and only if, they are ordinally equivalent and , 

establish the same set of equivalence classes of (generalized) 
intervals for elements of D. 

Definition 15 -- 
A generalized interval scale is said to be separationaZZy 

i n v a r i a n t  under the set T of transformations if, and only if, 
for all t&T, f and t*f are separationally equivalent. (Thus, 
[D/ : < / M/ =D=] is separationally invariant under T if, 

I I ED: and only if, for all t&T and all Ij, Ik, 
€ '  f f' 

P' q 

and 

f(Ij) - f(Ik) =D= f(I ) - f (Iq)-- P 

Stevens has commented (ref. 1, p. 25) that a linear interval 
scale is invariant under the set of all linear transformations 

t[f(I.)] 3 = af(I.)+b 3 
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where a and b are real constants. We, of course, can not claim 
such invariance properties for generalized interval scales since 
there are no defined addition and multiplication operations on 
the set M. However, it is clear that the generalized interval 
scale is at least separationally invariant under the set S of 
monotonically increasing functions specified by Postulate MP-4: 
-_ Theorem 7. - A generalized interval scale is separationally 
invariant under the set S of transformations postulated in MP-4. 
Proof. - The proof follows immediately from Definition 15 and 4 

Postulate MP-4. /// 
t 

It is not difficult to find examples of separationally equi- 
valent measurement scales, since one need merely pick two scales 
which are related by any shifting function in an appropriate 
group ( S , . ) .  For the special case of real number assignments, 
this might be, e.g., the group of functions s ( x )  = x +a, where a 
is some constant. Thus, for example, the Centigrade and Kelvin 
scales of temperature are separationally equivalent. But, a 
simple application of Definition 14 also shows that the Centigrade 
and Fahrenheit scales are also separationally equivalent. This 
is a case where real-number measurements related by a linear 
function s ( x )  = bx +a are separationally equivalent. Thus, we 
see that, although Theorem 7 is true, it is by no means the 
strongest theorem which might be presented about separational 
invariance. 

VII. - LINEAR INTERVAL SCALES 

In complexity measurements assigning real numbers, it has 
been found useful (ref. 6) to discuss the special case of separa- 
tional equivalence of scales which are similar up to multipli- 
cative and additive constants. To do so, one must define the 
special form of a Zinear  i n t e r v a Z  s c a Z e ,  or as Stevens' frequently 
refers to it, the i n t e r v a Z  s c a Z e .  We begin by extending 
Postulate MP-4. 
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Postulate MP-4R*. - The set M is the set of real numbers, for 
which one can thus define equality of intervals as follows: 

(mj I mk) =D= ( mp , mq) 

if, and only if, the real-number differences m - m = m and 
m - m = m are equal (i.e., m = m,). Then we may state the 
obvious theorem: 

j k R 

P q n R 

Theorem 8 .  - For Postulate MP-4RI =D= is an equivalence relation. 
Proof. - The proof follows immediately from the definition of 
=D= and the properties of number-theoretic differences. /// 

It should be obvious that once Postulate MP-4R is assumed 
and the properties of real numbers are thus introduced, one can 
also naturally define an o r d e r i n g  <,, of intervals, such that 

Y 

( mj, mk)CD (mp, ms) if, and only if, m j - m k = mR, m P - m 9 = m n' 
Although in setting up e m p i r i c a l  measurement scales and mR < m . n 

using real numbers, there may not exist empirical operations 
corresponding to either interval equality or interval ordering 
(refs. 2,12,13,14), in the mathematical sense one readily follows 
from the other once one assumes real-number measures. 

In accordance with Stevens, we may now define an interval 
measurement. 

Definition 16 

An i n t e r v a l  measurement  (or, alternatively, a l i n e a r  i n t e r -  

v a l  measurement )  is one satisfying Postulates MP-1, MP-2, MP-3, 1 

and MP-4R. An i n t e r v a l  s c a l e  (or, l i n e a r  i n t e r v a l  s c a l e )  is the 
- 1 consisting of the equivalence - 

triple (D/ Ef, <f/ -f, R/ =D= 
classes of measured items, their relative ordering, and the equi- 
valence classes of intervals between measures**. 

*We use the notation MP-4R to mean measurement Postulate MP-4 
for real-number assignments. 

subset of the reals. 
**Actually, the equivalence classes of intervals are simply a 
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Theorem 9. - An interval measurement is a generalized interval 
measurement. 
Proof. - As mentioned in our discussion following Definition 1 3 ,  

the group (S I . )  required for the linear interval scale to be a 
generalized interval measurement is the set of functions which 
add constant numbe'rs to the measurements. /// 

We may consider equating interval measurements by the follow- 
ing definition. . 
Definition 17 

Interval measurements f and g are differentiaZZy equivatent 
I I ED, if, and only if, for all Ij, IkI 
PI 9 

and 

f(Ij) - f(Ik) = f(1 P ) - f(Iq)-e- 

Thus, two interval measurements are differentially equivalent if, 
and only if, they are separationally equivalent, with =D= being 
equality of differences of real numbers. 

Definition 18 

An interval scale is said to be differentiaZZy invariant 
under the set T of transformations if, and only if, for all t&T, 
f and t-f are differentially equivalent. (Thus, (D/ f, Cf/ -5' 

R/ =D= ) is differentially invariant under T if, and only if, for 
I I ED: all tET and all Ij , Ik, 
P I  q 

f(1.) = f(Ik)--t[f(I.)1 = t[f(Ik)l, 
3 3 
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and 

f(Ij) - f(Ik) = f(I P ) - f(Iq)- 

tCf(Ij)l - tCf(Ik)l = t[f(I P 1 3  - tCf (Iq) 3. 

Following Stevens, we may then state the following theorem. 
Theorem 10. - An interval scale is differentially invariant 
under the set of linear transformations t(x) = ax+b, for arbi- 
trary constants a and b. 
Proof. - 

f(I.1 = f(Ik)-af(I.) + b  = af(Ik) + b  
7 7 

f(1.) < f(Ik)-af(I.)+b < af(Ik)+b 
7 7 

and 

f(Ij) - f(Ik) = f(1 ) - f(Iq)' 
P 

af(I.)+b-[af(Ik)+b] = af(1 ) +b-[af(Iq)+b]./// 
3 P 

Theorem 10 is, however, not the most general theorem possible 
concerning differential invariance. In parallel to our discussion 
following Theorem 7, we can find cases of invariance which are not . 
covered by Theorem 10. For example, the finite interval scales 
illustrated in Figure 4 are differentially equivalent but not 
related by a linear transformation of the form t (x) = ax +b. 
There exists, therefore, (at least for scales with finite numbers 
of elements) interval scales which are differentially equivalent 
but not related by a linear transformation ax + b. The case of 
infinite scales, and particularly those which are everywhere 
dense, may be of more interest, but we shall not here consider 
their relationship to the generality of Theorem 10. Suffice it 
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to say that, in contrast to Stevens' implications (ref. 1, 
Table 6, ref. 2, Table 1) the linear transformations are not the 
only tramsformations under which an interval scale is invariant. 

I 
j 

a 
b 
C 

d 
e 

f(1.) = x  
3 j 

1 
2 
4 
6 
7 

1 
2 1/2 t(x.1 fax. + b 

7 3 
4 1/2 
6 1/2 
8 

Figure 4. - Differentially equivalent scales 
which are not related by ax+b 

VIII. - RATIO AND UNIQUE SCALES 

We may now extend the hierarchy of measurement scales by 
recognizing those properties of the real numbers which lead to 
ratio scales*. 
Postulate MP-5R. - One may establish equality of ratios, 
mj/mk =r= m /m 
that m./mk =r= m /m 
and m = km (or equivalently, log m -log mk =D= log m 

for measures in the set of real numbers, such 
P q' 

if, and only if, for some kcR, m = kmk 
3 P q  j 
P q j P - log ms) 

*A general postulate for ratio scales might be alternatively pro- 
posed in parallel fashion to that of Postulate MP-4, as follows. 
Postulate MP-5. - There exists a group ( S ; )  of functions such 
that, for each SES, s:M+M is a monotonically increasing function, 
the group operation - is composition of functions, and 
s (mi) = mi -+ mi = 0, where 0 is thus a (unique) zero point. We 
define =r= such that (mj, mk) =r= (mp, mq) if, and only, 
s(mk) = mj and s(mq) = mp, for some s c S .  The author is indebted 
to Dirk vanDalen, M.I.T., for suggesting this possible prelimi- 
nary formulation of the postulates for a general ratio scale. 
The form of scale which satisfies MP-5 might, in parallel to 
Definition 13, be called a "generalized ratio scale". 
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Theorem 11. - The relation =r= is an equivalence relation. 
Proof. -The proof follows immediately from the definition of 
=r= and the properties of division (or, subtraction) on the real 

numbers. /// 
We shall be interested in preserving the =r= equivalence of 

ratios like m,/mk and m /m 
lence classes R/ =r= as part of the structure of the ratio scale. 

and thus will consider the equiva- 
3 P q'  

Definition 19 

A r a t i o  m e a s u r e m e n t  is one satisfying Postulates MP-1, MP-2, 
MP-3, MP-4R, and MP-5R. A r a t i o  s c a l e  is the ordered quadruple 
(D/ Ef, if/ :f, R/ =D=, R/ =r=) of equivalence classes of measured 
items, their relative ordering, the equivalence classes of linear 
intervals, and equivalence classes of ratios. 

Clearly, a ratio measurement is an interval measurement. 
Although the properties of Postulate MP-5R follow directly 

from the known properties of real numbers, and thus follow 
directly from Postulate MP-4R, we might conceive of an e m p i r i c a z  
measurement scale for which it were impossible to derive the one 
from the other, because of the lack of a known method for estab- 
lishing a 'zero' on the empirical scale (ref. 2, pp. 31-34). 

Without going into the details of the empirical counterparts 
of interval and ratio scales, we may merely note that the refine- 
ment which the ratio scale gives above that of an arbitrary inter- 
val scale is the ability to establish a unique, 'natural' zero 
point and, thus, to allow meaningful reference to r a t i o s  of 
measures (refs. 1,2,16). The Kelvin and Rankine scales of temper- 
ature are examples of such ratio scales. 

We may note that it is conceivable that a scale may be devel- 
oped which admits the equating of ratios such as postulated in 
MP-5R without admitting the equality of linear intervals as 
postulated in MP-4R. This is in fact what the Z o g a r i t h m i c  i n t e r -  
vaZ s c a Z e  does, as indicated previously (Section VI), and as 
discussed in detail in reference 2, pp. 31-34. 
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Equivalence and invariance of ratio scales may now be de- 
fined. 

Definition 20  

Ratio measurements f and g are p r o p o r t i o n a e l y  e q u i v a Z e n t  
if, and only if, for all I Ik, Ip, Iq&D, j' 

f(Ij) - f(Ik) =D= f(I ) - f(Iq)- P 

and 

f (I.)/f (Ik) =r= f (I )/f (I ) t-f 
3 P q 

Thus, two ratio measurements are proportionally equivalent if, 
and only if, they are differentially equivalent and yield the 
same equivalence classes of ratios of measures. 

Definition 21 . ---__ 

A ratio scale is said to be p r o p o r t i o n a Z Z y  i n v a r i a n t  under 
the set T of transformations if, and only if, for all teT, f and 
t*f are proportionally equivalent. 

Stevens has suggested the following theorem. 
Theorem 12. - A ratio scale is invariant under the set of "simi- 
larity transformations" t(x) = ax; i.e., it is invariant under 

I multiplication by any constant. 

1 
i 

! -- 
1, 

Proof. - The proof follows immediately from Definitions 20  and 

21 and known properties of real numbers. /// 
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Thus, multiplication by a constant preserves the form of a 
ratio scale. Scales like Rankine and Kelvin temperature scales 
are proportionally equivalent ratio scales related by a constant. 

scales of Figure 4 are not proportionally equivalent as ratio 
scales. Nor are scales with different zero points, such as Centi- 
grade and Kelvin scales. 

A quick check will show that the differentially equivalent 

Proportional equivalence is a form of equivalence frequently 
Y 

useful in structural complexity measurements, where natural 
'zeros' (no structure, etc.) may exist and scales may be "unique 
up to a constant multiplier." 

To compl.ete the hierarchy of scales we could now suggest the 
possibility of a natural unit of measurement, which restricted 
the 'constant multiplier' of a ratio scale to a single acceptable 
value, getting the following obvious development of a u n i q u e  
scale. 
Postulate MP-6R. - There is a u n i q u e  unit of measurement. 

Definition ~~ ~~~~ 22 

A u n i q u e  measurement  f is one satisfying Postulates MP-1, 
MP-2, MP-3, MP-4R, MP-5RI and MP-6R. 

Definition 23 

'Unique' measurements f and g are u n i q u e l y  e q u i v a l e n t  (or 
identical) if, and only if, f(1.) = g(1.) for all I.ED. 

3 3 3 
Definition 24 

A unique measurement is u n i q u e l y  i n v a r i a n t  under a set T of 
transformations if, and only if, for all tET, t-f = f. A unique 
scale is thus invariant under the identity transformation. 

IX. - THE 'SPECTRUM' OF MEASUREMENT SCALES 

. 

We have a hierarchy or 'spectrum' of measurement scales, 
therefore, which may be usefully diagrammed as in Figure 5. This 
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Measurements 

(Equality and Order Scales 
Single-valued (Ordering) 
Measures 1 

\ Ordinal Scales / 
(Ordering, Equality, and Single-valued) 

Generalized Interval Scales 

Linear 
(Equal 
Real N 

/ 
Interval Scales 
Linear Intervals, 
umbers) 

Logarithmic Interval 
Scales (Equal Loga- 
rithmic Intervals, 
Real Numbers 1 

(Equal Ratios, Unique Zero) 

Unique' Scales 
(Unique Unit of Measure) 

Figure 5. - The "spectrum" of measurement scale forms 
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figure illustrates that nominal measurements are a subclass of 
all measurements, ordinal scales are a subset of the set of nomi- 
nal scales, etc. (This diagramming is in accordance with a fre- 
quent practice of set-theoretic line diagrams (ref. 24, p. 11 or 
ref. 2, p. 3 2 ) . )  It is, no doubt, obvious that a number of other 
scale forms could be considered which may fall between the illus- 
trated scale forms, or that may branch off from the spectrum at 
various points. 

Figure 5 is a useful pictorial summary of the hierarchy of 
measurement scale forms and their associated restrictions upon 
the measurement functions and the structures of the sets of 
measure values. The definitions and theorems developed within 
the mathematical model presented in this paper illustrate the 
meaning and significance of equivalences, and invariances under 
sets of transformations for each of the scale types indicated in 
Figure 5. They also demonstrate to what degree Stevens' claims 
about nominal, ordinal, interval, and ratio scales and their 
invariances are accurate. 

It is appropriate, however, to note in passing, several 
interesting but unanswered questions about the hierarchy of 
measurement scales and their invariances. One such question 
concerns the nature of the maximal or largest set of transforma- 
tions under which separational invariance of a generalized inter- 
val measurement is preserved. A similar question involves what 
maximal s e t  of transformations preserve differential invariance 
of linear interval scales. The example of Figure 4 illustrates 
that this set must include more than just the linear transforma- 
tions, contrary to Stevens' implications (refs. 1,2). Another 
closely related question might then be what minimal additional 
condition must be added to those of differential equivalence to 
restrict the set of transformations (under which a linear internal 
scale is invariant) to being exactly the set of linear transforma- 
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tions. This new form of restricted equivalence would then more 
closely correspond to Stevens' implied scale invariance under 
only the linear transformations. 

Electronics Research Center 
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